Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.29.24303285

ABSTRACT

Institutions of higher education (IHEs) have been a focus of SARS-CoV-2 transmission studies but there is limited information on how viral diversity and transmission at IHEs changed as the pandemic progressed. Here we analyze 3606 viral genomes from unique COVID-19 episodes collected at a public university in Seattle, Washington (WA) from September 2020 to September 2022. Across the study period, we found evidence of frequent viral transmission among university affiliates with 60% (n=2153) of viral genomes from campus specimens genetically identical to at least one other campus specimen. Moreover, viruses from students were observed in transmission clusters at a higher frequency than in the overall dataset while viruses from symptomatic infections were observed in transmission clusters at a lower frequency. Though only a small percentage of community viruses were identified as possible descendants of viruses isolated in university study specimens, phylodynamic modelling suggested a high rate of transmission events from campus into the local community, particularly during the 2021-2022 academic year. We conclude that viral transmission was common within the university population throughout the study period but that not all university affiliates were equally likely to be involved. In addition, the transmission rate from campus into the surrounding community may have increased during the second year of the study, possibly due to return to in-person instruction.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2355623.v1

ABSTRACT

Background: Early during the COVID-19 pandemic, it was important to better understand transmission dynamics of SARS-CoV-2, the virus that causes COVID-19. Household contacts of infected individuals are particularly at risk for infection, but delays in contact tracing, delays in testing contacts, and isolation and quarantine pose challenges to accurately capturing secondary household cases. Methods: In this study, 346 households in the Seattle region were provided with respiratory specimen collection kits and remotely monitored using web-based surveys for respiratory illness symptoms weekly between October 1, 2020, and June 20, 2021. Symptomatic participants collected respiratory specimens at symptom onset and mailed specimens to the central laboratory in Seattle. Specimens were tested for SARS-CoV-2 using RT-PCR with whole genome sequencing attempted when positive. SARS-CoV-2-infected individuals were notified, and their household contacts submitted specimens every two days for fourteen days. Results: In total, 1,371 participants collected 2,029 specimens that were tested; 16 individuals (1.2%) within 6 households tested positive for SARS-CoV-2 during the study period. Full genome sequences were generated from 11 individuals within 4 households. Very little genetic variation was found among SARS-CoV-2 viruses sequenced from different individuals in the same household, supporting transmission within the household. Conclusions: This study indicates web-based surveillance of respiratory symptoms, combined with rapid and longitudinal specimen collection and remote contact tracing, provides a viable strategy to monitor households and detect household transmission of SARS-CoV-2. Trial Registration Identifier: NCT04141930


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Respiratory Insufficiency
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.15.21253227

ABSTRACT

BackgroundTesting programs have been utilized as part of SARS-CoV-2 mitigation strategies on university campuses, and it is not known which strategies successfully identify cases and contain outbreaks. ObjectiveEvaluation of a testing program to control SARS-CoV-2 transmission at a large university. DesignProspective longitudinal study using remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was (1) exposed to a known case, developed new symptoms, or reported high-risk behavior, (2) a member of a group experiencing an outbreak, or (3) at baseline upon enrollment. SettingAn urban, public university during Autumn quarter of 2020 ParticipantsStudents, staff, and faculty. MeasurementsSARS-CoV-2 PCR testing was conducted, and viral genome sequencing was performed. ResultsWe enrolled 16,476 individuals, performed 29,783 SARS-CoV-2 tests, and detected 236 infections. Greek community affiliation was the strongest risk factor for testing positive. 75.0% of positive cases reported at least one of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). 88.1% of viral genomes (52/59) sequenced from Greek-affiliated students were genetically identical to at least one other genome detected, indicative of rapid SARS-CoV-2 spread within this group, compared to 37.9% (11/29) of genomes from non-Greek students and employees. LimitationsObservational study. ConclusionIn a setting of limited resources during a pandemic, we prioritized testing of individuals with symptoms and high-risk exposure during outbreaks. Rapid spread of SARS- CoV-2 occurred within outbreaks without evidence of further spread to the surrounding community. A testing program focused on high-risk populations may be effective as part of a comprehensive university-wide mitigation strategy to control the SARS-CoV-2 pandemic.

4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.06.20169367

ABSTRACT

Most individuals infected with SARS-CoV-2 develop neutralizing antibodies that target the viral spike protein. Here we quantify how levels of these antibodies change in the months following SARS-CoV-2 infection by examining longitudinal samples collected between {approx}30 and 152 days post-symptom onset from a prospective cohort of 34 recovered individuals with asymptomatic, mild, or moderate-severe disease. Neutralizing antibody titers declined an average of about four-fold from one to four months post-symptom onset. Importantly, our data are consistent with the expected early immune response to viral infection, where an initial peak in antibody levels is followed by a decline to a lower plateau. Additional studies of long-lived B-cells and antibody titers over longer time frames are necessary to determine the durability of immunity to SARS-CoV-2.


Subject(s)
COVID-19 , Virus Diseases
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.13.20035618

ABSTRACT

More than 100,000 people worldwide are known to have been infected with SARS-CoV-2 beginning in December 2019. The virus has now spread to over 93 countries including the United States, with the largest cluster of US cases to date in the Seattle metropolitan area in Washington. Given the rapid increase in the number of local cases, the availability of accurate, high-throughput SARS-CoV-2 testing is vital to efforts to manage the current public health crisis. In the course of optimizing SARS-CoV-2 testing performed by the University of Washington Clinical Virology Lab (UW Virology Lab), we tested assays using seven different primer/probe sets and one assay kit. We found that the most sensitive assays were those the used the E-gene primer/probe set described by Corman et al. (Eurosurveillance 25(3), 2020, https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045) and the N2 set described by the CDC (Division of Viral Diseases, Centers for Disease Control and Prevention, 2020, https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf). All assays tested were found to be highly specific for SARS-CoV-2, with no cross-reactivity with other respiratory viruses observed in our analyses regardless of the primer/probe set or kit used. These results will provide invaluable information to other clinical laboratories who are actively developing SARS-CoV-2 testing protocols at a time when increased testing capacity is urgently needed worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL